Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

نویسندگان

  • Seok-Beom Roh
  • Sung-Kwun Oh
چکیده

In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic

This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

Support Vector Machines for Object Recognition

Support Vector Machines [1-4] is a learning technique that can be viewed as a new method for training polynomial, neural network, or Radial Basis Functions Classifiers. The decision surfaces are found by solving a linearly constrained quadratic programming problem. This paper evaluates the use of Support Vector Machines for object recognition. The dataset used is made up of different poses of 3...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014